Evaluate
12\left(\sqrt{3}-5\right)\approx -39.215390309
Share
Copied to clipboard
3\times 2\sqrt{2}\left(\sqrt{54}-5\sqrt{2}-2\sqrt{6}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
6\sqrt{2}\left(\sqrt{54}-5\sqrt{2}-2\sqrt{6}\right)
Multiply 3 and 2 to get 6.
6\sqrt{2}\left(3\sqrt{6}-5\sqrt{2}-2\sqrt{6}\right)
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
6\sqrt{2}\left(\sqrt{6}-5\sqrt{2}\right)
Combine 3\sqrt{6} and -2\sqrt{6} to get \sqrt{6}.
6\sqrt{2}\sqrt{6}-30\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply 6\sqrt{2} by \sqrt{6}-5\sqrt{2}.
6\sqrt{2}\sqrt{2}\sqrt{3}-30\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6\times 2\sqrt{3}-30\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
12\sqrt{3}-30\left(\sqrt{2}\right)^{2}
Multiply 6 and 2 to get 12.
12\sqrt{3}-30\times 2
The square of \sqrt{2} is 2.
12\sqrt{3}-60
Multiply -30 and 2 to get -60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}