Evaluate
\frac{15\sqrt{3}}{2}\approx 12.990381057
Share
Copied to clipboard
\frac{\frac{3\sqrt{10}}{2}\sqrt{2}}{2}\sqrt{15}
Express 3\times \frac{\sqrt{10}}{2} as a single fraction.
\frac{\frac{3\sqrt{10}\sqrt{2}}{2}}{2}\sqrt{15}
Express \frac{3\sqrt{10}}{2}\sqrt{2} as a single fraction.
\frac{3\sqrt{10}\sqrt{2}}{2\times 2}\sqrt{15}
Express \frac{\frac{3\sqrt{10}\sqrt{2}}{2}}{2} as a single fraction.
\frac{3\sqrt{10}\sqrt{2}\sqrt{15}}{2\times 2}
Express \frac{3\sqrt{10}\sqrt{2}}{2\times 2}\sqrt{15} as a single fraction.
\frac{3\sqrt{2}\sqrt{5}\sqrt{2}\sqrt{15}}{2\times 2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{3\times 2\sqrt{5}\sqrt{15}}{2\times 2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{3\times 2\sqrt{5}\sqrt{5}\sqrt{3}}{2\times 2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{3\times 2\times 5\sqrt{3}}{2\times 2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{6\times 5\sqrt{3}}{2\times 2}
Multiply 3 and 2 to get 6.
\frac{30\sqrt{3}}{2\times 2}
Multiply 6 and 5 to get 30.
\frac{30\sqrt{3}}{4}
Multiply 2 and 2 to get 4.
\frac{15}{2}\sqrt{3}
Divide 30\sqrt{3} by 4 to get \frac{15}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}