Solve for λ
\lambda =\frac{\sqrt{145}-13}{6}\approx -0.159734237
\lambda =\frac{-\sqrt{145}-13}{6}\approx -4.173599096
Share
Copied to clipboard
3\lambda ^{2}+13\lambda +2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-13±\sqrt{13^{2}-4\times 3\times 2}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 13 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-13±\sqrt{169-4\times 3\times 2}}{2\times 3}
Square 13.
\lambda =\frac{-13±\sqrt{169-12\times 2}}{2\times 3}
Multiply -4 times 3.
\lambda =\frac{-13±\sqrt{169-24}}{2\times 3}
Multiply -12 times 2.
\lambda =\frac{-13±\sqrt{145}}{2\times 3}
Add 169 to -24.
\lambda =\frac{-13±\sqrt{145}}{6}
Multiply 2 times 3.
\lambda =\frac{\sqrt{145}-13}{6}
Now solve the equation \lambda =\frac{-13±\sqrt{145}}{6} when ± is plus. Add -13 to \sqrt{145}.
\lambda =\frac{-\sqrt{145}-13}{6}
Now solve the equation \lambda =\frac{-13±\sqrt{145}}{6} when ± is minus. Subtract \sqrt{145} from -13.
\lambda =\frac{\sqrt{145}-13}{6} \lambda =\frac{-\sqrt{145}-13}{6}
The equation is now solved.
3\lambda ^{2}+13\lambda +2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3\lambda ^{2}+13\lambda +2-2=-2
Subtract 2 from both sides of the equation.
3\lambda ^{2}+13\lambda =-2
Subtracting 2 from itself leaves 0.
\frac{3\lambda ^{2}+13\lambda }{3}=-\frac{2}{3}
Divide both sides by 3.
\lambda ^{2}+\frac{13}{3}\lambda =-\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
\lambda ^{2}+\frac{13}{3}\lambda +\left(\frac{13}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{13}{6}\right)^{2}
Divide \frac{13}{3}, the coefficient of the x term, by 2 to get \frac{13}{6}. Then add the square of \frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+\frac{13}{3}\lambda +\frac{169}{36}=-\frac{2}{3}+\frac{169}{36}
Square \frac{13}{6} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}+\frac{13}{3}\lambda +\frac{169}{36}=\frac{145}{36}
Add -\frac{2}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda +\frac{13}{6}\right)^{2}=\frac{145}{36}
Factor \lambda ^{2}+\frac{13}{3}\lambda +\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +\frac{13}{6}\right)^{2}}=\sqrt{\frac{145}{36}}
Take the square root of both sides of the equation.
\lambda +\frac{13}{6}=\frac{\sqrt{145}}{6} \lambda +\frac{13}{6}=-\frac{\sqrt{145}}{6}
Simplify.
\lambda =\frac{\sqrt{145}-13}{6} \lambda =\frac{-\sqrt{145}-13}{6}
Subtract \frac{13}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}