Evaluate
\frac{49}{10}=4.9
Factor
\frac{7 ^ {2}}{2 \cdot 5} = 4\frac{9}{10} = 4.9
Share
Copied to clipboard
\frac{27+7}{9}\times \frac{7}{10}+\frac{7}{10}\times \frac{3\times 9+2}{9}
Multiply 3 and 9 to get 27.
\frac{34}{9}\times \frac{7}{10}+\frac{7}{10}\times \frac{3\times 9+2}{9}
Add 27 and 7 to get 34.
\frac{34\times 7}{9\times 10}+\frac{7}{10}\times \frac{3\times 9+2}{9}
Multiply \frac{34}{9} times \frac{7}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{238}{90}+\frac{7}{10}\times \frac{3\times 9+2}{9}
Do the multiplications in the fraction \frac{34\times 7}{9\times 10}.
\frac{119}{45}+\frac{7}{10}\times \frac{3\times 9+2}{9}
Reduce the fraction \frac{238}{90} to lowest terms by extracting and canceling out 2.
\frac{119}{45}+\frac{7}{10}\times \frac{27+2}{9}
Multiply 3 and 9 to get 27.
\frac{119}{45}+\frac{7}{10}\times \frac{29}{9}
Add 27 and 2 to get 29.
\frac{119}{45}+\frac{7\times 29}{10\times 9}
Multiply \frac{7}{10} times \frac{29}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{119}{45}+\frac{203}{90}
Do the multiplications in the fraction \frac{7\times 29}{10\times 9}.
\frac{238}{90}+\frac{203}{90}
Least common multiple of 45 and 90 is 90. Convert \frac{119}{45} and \frac{203}{90} to fractions with denominator 90.
\frac{238+203}{90}
Since \frac{238}{90} and \frac{203}{90} have the same denominator, add them by adding their numerators.
\frac{441}{90}
Add 238 and 203 to get 441.
\frac{49}{10}
Reduce the fraction \frac{441}{90} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}