Evaluate
\frac{15}{2}=7.5
Factor
\frac{3 \cdot 5}{2} = 7\frac{1}{2} = 7.5
Quiz
Arithmetic
5 problems similar to:
3 \frac { 6 } { 4 } + \frac { 7 } { 12 } + 2 \frac { 10 } { 24 } =
Share
Copied to clipboard
\frac{12+6}{4}+\frac{7}{12}+\frac{2\times 24+10}{24}
Multiply 3 and 4 to get 12.
\frac{18}{4}+\frac{7}{12}+\frac{2\times 24+10}{24}
Add 12 and 6 to get 18.
\frac{9}{2}+\frac{7}{12}+\frac{2\times 24+10}{24}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{54}{12}+\frac{7}{12}+\frac{2\times 24+10}{24}
Least common multiple of 2 and 12 is 12. Convert \frac{9}{2} and \frac{7}{12} to fractions with denominator 12.
\frac{54+7}{12}+\frac{2\times 24+10}{24}
Since \frac{54}{12} and \frac{7}{12} have the same denominator, add them by adding their numerators.
\frac{61}{12}+\frac{2\times 24+10}{24}
Add 54 and 7 to get 61.
\frac{61}{12}+\frac{48+10}{24}
Multiply 2 and 24 to get 48.
\frac{61}{12}+\frac{58}{24}
Add 48 and 10 to get 58.
\frac{61}{12}+\frac{29}{12}
Reduce the fraction \frac{58}{24} to lowest terms by extracting and canceling out 2.
\frac{61+29}{12}
Since \frac{61}{12} and \frac{29}{12} have the same denominator, add them by adding their numerators.
\frac{90}{12}
Add 61 and 29 to get 90.
\frac{15}{2}
Reduce the fraction \frac{90}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}