Evaluate
\frac{91}{18}\approx 5.055555556
Factor
\frac{7 \cdot 13}{2 \cdot 3 ^ {2}} = 5\frac{1}{18} = 5.055555555555555
Share
Copied to clipboard
\frac{27+4}{9}+\frac{1\times 18+11}{18}
Multiply 3 and 9 to get 27.
\frac{31}{9}+\frac{1\times 18+11}{18}
Add 27 and 4 to get 31.
\frac{31}{9}+\frac{18+11}{18}
Multiply 1 and 18 to get 18.
\frac{31}{9}+\frac{29}{18}
Add 18 and 11 to get 29.
\frac{62}{18}+\frac{29}{18}
Least common multiple of 9 and 18 is 18. Convert \frac{31}{9} and \frac{29}{18} to fractions with denominator 18.
\frac{62+29}{18}
Since \frac{62}{18} and \frac{29}{18} have the same denominator, add them by adding their numerators.
\frac{91}{18}
Add 62 and 29 to get 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}