Evaluate
\frac{89}{10}=8.9
Factor
\frac{89}{2 \cdot 5} = 8\frac{9}{10} = 8.9
Share
Copied to clipboard
\frac{30+4}{10}+\frac{2\times 10+3}{10}+\frac{3\times 10+2}{10}
Multiply 3 and 10 to get 30.
\frac{34}{10}+\frac{2\times 10+3}{10}+\frac{3\times 10+2}{10}
Add 30 and 4 to get 34.
\frac{17}{5}+\frac{2\times 10+3}{10}+\frac{3\times 10+2}{10}
Reduce the fraction \frac{34}{10} to lowest terms by extracting and canceling out 2.
\frac{17}{5}+\frac{20+3}{10}+\frac{3\times 10+2}{10}
Multiply 2 and 10 to get 20.
\frac{17}{5}+\frac{23}{10}+\frac{3\times 10+2}{10}
Add 20 and 3 to get 23.
\frac{34}{10}+\frac{23}{10}+\frac{3\times 10+2}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{17}{5} and \frac{23}{10} to fractions with denominator 10.
\frac{34+23}{10}+\frac{3\times 10+2}{10}
Since \frac{34}{10} and \frac{23}{10} have the same denominator, add them by adding their numerators.
\frac{57}{10}+\frac{3\times 10+2}{10}
Add 34 and 23 to get 57.
\frac{57}{10}+\frac{30+2}{10}
Multiply 3 and 10 to get 30.
\frac{57}{10}+\frac{32}{10}
Add 30 and 2 to get 32.
\frac{57+32}{10}
Since \frac{57}{10} and \frac{32}{10} have the same denominator, add them by adding their numerators.
\frac{89}{10}
Add 57 and 32 to get 89.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}