Evaluate
\frac{141}{170}\approx 0.829411765
Factor
\frac{3 \cdot 47}{2 \cdot 5 \cdot 17} = 0.8294117647058824
Share
Copied to clipboard
\frac{\frac{30+3}{10}}{\frac{1\times 3+1}{3}+\frac{1}{12}}-\frac{1\times 2+1}{2}
Multiply 3 and 10 to get 30.
\frac{\frac{33}{10}}{\frac{1\times 3+1}{3}+\frac{1}{12}}-\frac{1\times 2+1}{2}
Add 30 and 3 to get 33.
\frac{\frac{33}{10}}{\frac{3+1}{3}+\frac{1}{12}}-\frac{1\times 2+1}{2}
Multiply 1 and 3 to get 3.
\frac{\frac{33}{10}}{\frac{4}{3}+\frac{1}{12}}-\frac{1\times 2+1}{2}
Add 3 and 1 to get 4.
\frac{\frac{33}{10}}{\frac{16}{12}+\frac{1}{12}}-\frac{1\times 2+1}{2}
Least common multiple of 3 and 12 is 12. Convert \frac{4}{3} and \frac{1}{12} to fractions with denominator 12.
\frac{\frac{33}{10}}{\frac{16+1}{12}}-\frac{1\times 2+1}{2}
Since \frac{16}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{33}{10}}{\frac{17}{12}}-\frac{1\times 2+1}{2}
Add 16 and 1 to get 17.
\frac{33}{10}\times \frac{12}{17}-\frac{1\times 2+1}{2}
Divide \frac{33}{10} by \frac{17}{12} by multiplying \frac{33}{10} by the reciprocal of \frac{17}{12}.
\frac{33\times 12}{10\times 17}-\frac{1\times 2+1}{2}
Multiply \frac{33}{10} times \frac{12}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{396}{170}-\frac{1\times 2+1}{2}
Do the multiplications in the fraction \frac{33\times 12}{10\times 17}.
\frac{198}{85}-\frac{1\times 2+1}{2}
Reduce the fraction \frac{396}{170} to lowest terms by extracting and canceling out 2.
\frac{198}{85}-\frac{2+1}{2}
Multiply 1 and 2 to get 2.
\frac{198}{85}-\frac{3}{2}
Add 2 and 1 to get 3.
\frac{396}{170}-\frac{255}{170}
Least common multiple of 85 and 2 is 170. Convert \frac{198}{85} and \frac{3}{2} to fractions with denominator 170.
\frac{396-255}{170}
Since \frac{396}{170} and \frac{255}{170} have the same denominator, subtract them by subtracting their numerators.
\frac{141}{170}
Subtract 255 from 396 to get 141.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}