Evaluate
\frac{10}{21}\approx 0.476190476
Factor
\frac{2 \cdot 5}{3 \cdot 7} = 0.47619047619047616
Share
Copied to clipboard
\frac{\frac{9+2}{3}}{\frac{4\times 5+2}{5}\times \frac{1\times 4+3}{4}}
Multiply 3 and 3 to get 9.
\frac{\frac{11}{3}}{\frac{4\times 5+2}{5}\times \frac{1\times 4+3}{4}}
Add 9 and 2 to get 11.
\frac{\frac{11}{3}}{\frac{20+2}{5}\times \frac{1\times 4+3}{4}}
Multiply 4 and 5 to get 20.
\frac{\frac{11}{3}}{\frac{22}{5}\times \frac{1\times 4+3}{4}}
Add 20 and 2 to get 22.
\frac{\frac{11}{3}}{\frac{22}{5}\times \frac{4+3}{4}}
Multiply 1 and 4 to get 4.
\frac{\frac{11}{3}}{\frac{22}{5}\times \frac{7}{4}}
Add 4 and 3 to get 7.
\frac{\frac{11}{3}}{\frac{22\times 7}{5\times 4}}
Multiply \frac{22}{5} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{11}{3}}{\frac{154}{20}}
Do the multiplications in the fraction \frac{22\times 7}{5\times 4}.
\frac{\frac{11}{3}}{\frac{77}{10}}
Reduce the fraction \frac{154}{20} to lowest terms by extracting and canceling out 2.
\frac{11}{3}\times \frac{10}{77}
Divide \frac{11}{3} by \frac{77}{10} by multiplying \frac{11}{3} by the reciprocal of \frac{77}{10}.
\frac{11\times 10}{3\times 77}
Multiply \frac{11}{3} times \frac{10}{77} by multiplying numerator times numerator and denominator times denominator.
\frac{110}{231}
Do the multiplications in the fraction \frac{11\times 10}{3\times 77}.
\frac{10}{21}
Reduce the fraction \frac{110}{231} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}