Evaluate
\frac{475}{126}\approx 3.76984127
Factor
\frac{5 ^ {2} \cdot 19}{2 \cdot 3 ^ {2} \cdot 7} = 3\frac{97}{126} = 3.7698412698412698
Quiz
Arithmetic
5 problems similar to:
3 \frac { 1 } { 7 } - 1 \frac { 4 } { 9 } + 2 \frac { 1 } { 14 }
Share
Copied to clipboard
\frac{21+1}{7}-\frac{1\times 9+4}{9}+\frac{2\times 14+1}{14}
Multiply 3 and 7 to get 21.
\frac{22}{7}-\frac{1\times 9+4}{9}+\frac{2\times 14+1}{14}
Add 21 and 1 to get 22.
\frac{22}{7}-\frac{9+4}{9}+\frac{2\times 14+1}{14}
Multiply 1 and 9 to get 9.
\frac{22}{7}-\frac{13}{9}+\frac{2\times 14+1}{14}
Add 9 and 4 to get 13.
\frac{198}{63}-\frac{91}{63}+\frac{2\times 14+1}{14}
Least common multiple of 7 and 9 is 63. Convert \frac{22}{7} and \frac{13}{9} to fractions with denominator 63.
\frac{198-91}{63}+\frac{2\times 14+1}{14}
Since \frac{198}{63} and \frac{91}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{107}{63}+\frac{2\times 14+1}{14}
Subtract 91 from 198 to get 107.
\frac{107}{63}+\frac{28+1}{14}
Multiply 2 and 14 to get 28.
\frac{107}{63}+\frac{29}{14}
Add 28 and 1 to get 29.
\frac{214}{126}+\frac{261}{126}
Least common multiple of 63 and 14 is 126. Convert \frac{107}{63} and \frac{29}{14} to fractions with denominator 126.
\frac{214+261}{126}
Since \frac{214}{126} and \frac{261}{126} have the same denominator, add them by adding their numerators.
\frac{475}{126}
Add 214 and 261 to get 475.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}