Evaluate
\frac{61}{30}\approx 2.033333333
Factor
\frac{61}{2 \cdot 3 \cdot 5} = 2\frac{1}{30} = 2.033333333333333
Share
Copied to clipboard
\frac{15+1}{5}-\frac{1\times 6+1}{6}
Multiply 3 and 5 to get 15.
\frac{16}{5}-\frac{1\times 6+1}{6}
Add 15 and 1 to get 16.
\frac{16}{5}-\frac{6+1}{6}
Multiply 1 and 6 to get 6.
\frac{16}{5}-\frac{7}{6}
Add 6 and 1 to get 7.
\frac{96}{30}-\frac{35}{30}
Least common multiple of 5 and 6 is 30. Convert \frac{16}{5} and \frac{7}{6} to fractions with denominator 30.
\frac{96-35}{30}
Since \frac{96}{30} and \frac{35}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{61}{30}
Subtract 35 from 96 to get 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}