3 \frac { 1 } { 3 } \% \times 107 + ( 68 \% \times 52 )
Evaluate
\frac{5839}{150}\approx 38.926666667
Factor
\frac{5839}{2 \cdot 3 \cdot 5 ^ {2}} = 38\frac{139}{150} = 38.92666666666667
Share
Copied to clipboard
\frac{3\times 3+1}{3\times 100}\times 107+\frac{68}{100}\times 52
Express \frac{\frac{3\times 3+1}{3}}{100} as a single fraction.
\frac{9+1}{3\times 100}\times 107+\frac{68}{100}\times 52
Multiply 3 and 3 to get 9.
\frac{10}{3\times 100}\times 107+\frac{68}{100}\times 52
Add 9 and 1 to get 10.
\frac{10}{300}\times 107+\frac{68}{100}\times 52
Multiply 3 and 100 to get 300.
\frac{1}{30}\times 107+\frac{68}{100}\times 52
Reduce the fraction \frac{10}{300} to lowest terms by extracting and canceling out 10.
\frac{107}{30}+\frac{68}{100}\times 52
Multiply \frac{1}{30} and 107 to get \frac{107}{30}.
\frac{107}{30}+\frac{17}{25}\times 52
Reduce the fraction \frac{68}{100} to lowest terms by extracting and canceling out 4.
\frac{107}{30}+\frac{17\times 52}{25}
Express \frac{17}{25}\times 52 as a single fraction.
\frac{107}{30}+\frac{884}{25}
Multiply 17 and 52 to get 884.
\frac{535}{150}+\frac{5304}{150}
Least common multiple of 30 and 25 is 150. Convert \frac{107}{30} and \frac{884}{25} to fractions with denominator 150.
\frac{535+5304}{150}
Since \frac{535}{150} and \frac{5304}{150} have the same denominator, add them by adding their numerators.
\frac{5839}{150}
Add 535 and 5304 to get 5839.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}