Evaluate
\frac{55}{12}\approx 4.583333333
Factor
\frac{5 \cdot 11}{3 \cdot 2 ^ {2}} = 4\frac{7}{12} = 4.583333333333333
Share
Copied to clipboard
\frac{6+1}{2}-\left(1.25-\frac{2\times 3+1}{3}\right)
Multiply 3 and 2 to get 6.
\frac{7}{2}-\left(1.25-\frac{2\times 3+1}{3}\right)
Add 6 and 1 to get 7.
\frac{7}{2}-\left(1.25-\frac{6+1}{3}\right)
Multiply 2 and 3 to get 6.
\frac{7}{2}-\left(1.25-\frac{7}{3}\right)
Add 6 and 1 to get 7.
\frac{7}{2}-\left(\frac{5}{4}-\frac{7}{3}\right)
Convert decimal number 1.25 to fraction \frac{125}{100}. Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{7}{2}-\left(\frac{15}{12}-\frac{28}{12}\right)
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{7}{3} to fractions with denominator 12.
\frac{7}{2}-\frac{15-28}{12}
Since \frac{15}{12} and \frac{28}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{2}-\left(-\frac{13}{12}\right)
Subtract 28 from 15 to get -13.
\frac{7}{2}+\frac{13}{12}
The opposite of -\frac{13}{12} is \frac{13}{12}.
\frac{42}{12}+\frac{13}{12}
Least common multiple of 2 and 12 is 12. Convert \frac{7}{2} and \frac{13}{12} to fractions with denominator 12.
\frac{42+13}{12}
Since \frac{42}{12} and \frac{13}{12} have the same denominator, add them by adding their numerators.
\frac{55}{12}
Add 42 and 13 to get 55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}