Evaluate
\frac{21}{20}=1.05
Factor
\frac{3 \cdot 7}{2 ^ {2} \cdot 5} = 1\frac{1}{20} = 1.05
Share
Copied to clipboard
\frac{\frac{6+1}{2}}{\frac{2\times 9+4}{9}\times \frac{1\times 11+4}{11}}
Multiply 3 and 2 to get 6.
\frac{\frac{7}{2}}{\frac{2\times 9+4}{9}\times \frac{1\times 11+4}{11}}
Add 6 and 1 to get 7.
\frac{\frac{7}{2}}{\frac{18+4}{9}\times \frac{1\times 11+4}{11}}
Multiply 2 and 9 to get 18.
\frac{\frac{7}{2}}{\frac{22}{9}\times \frac{1\times 11+4}{11}}
Add 18 and 4 to get 22.
\frac{\frac{7}{2}}{\frac{22}{9}\times \frac{11+4}{11}}
Multiply 1 and 11 to get 11.
\frac{\frac{7}{2}}{\frac{22}{9}\times \frac{15}{11}}
Add 11 and 4 to get 15.
\frac{\frac{7}{2}}{\frac{22\times 15}{9\times 11}}
Multiply \frac{22}{9} times \frac{15}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{7}{2}}{\frac{330}{99}}
Do the multiplications in the fraction \frac{22\times 15}{9\times 11}.
\frac{\frac{7}{2}}{\frac{10}{3}}
Reduce the fraction \frac{330}{99} to lowest terms by extracting and canceling out 33.
\frac{7}{2}\times \frac{3}{10}
Divide \frac{7}{2} by \frac{10}{3} by multiplying \frac{7}{2} by the reciprocal of \frac{10}{3}.
\frac{7\times 3}{2\times 10}
Multiply \frac{7}{2} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{20}
Do the multiplications in the fraction \frac{7\times 3}{2\times 10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}