Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(x-1\right)^{2}-\left(2x+3\right)\left(2x-3\right)
Multiply 3 and 3 to get 9.
9\left(x^{2}-2x+1\right)-\left(2x+3\right)\left(2x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
9x^{2}-18x+9-\left(2x+3\right)\left(2x-3\right)
Use the distributive property to multiply 9 by x^{2}-2x+1.
9x^{2}-18x+9-\left(\left(2x\right)^{2}-9\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
9x^{2}-18x+9-\left(2^{2}x^{2}-9\right)
Expand \left(2x\right)^{2}.
9x^{2}-18x+9-\left(4x^{2}-9\right)
Calculate 2 to the power of 2 and get 4.
9x^{2}-18x+9-4x^{2}+9
To find the opposite of 4x^{2}-9, find the opposite of each term.
5x^{2}-18x+9+9
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-18x+18
Add 9 and 9 to get 18.
9\left(x-1\right)^{2}-\left(2x+3\right)\left(2x-3\right)
Multiply 3 and 3 to get 9.
9\left(x^{2}-2x+1\right)-\left(2x+3\right)\left(2x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
9x^{2}-18x+9-\left(2x+3\right)\left(2x-3\right)
Use the distributive property to multiply 9 by x^{2}-2x+1.
9x^{2}-18x+9-\left(\left(2x\right)^{2}-9\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
9x^{2}-18x+9-\left(2^{2}x^{2}-9\right)
Expand \left(2x\right)^{2}.
9x^{2}-18x+9-\left(4x^{2}-9\right)
Calculate 2 to the power of 2 and get 4.
9x^{2}-18x+9-4x^{2}+9
To find the opposite of 4x^{2}-9, find the opposite of each term.
5x^{2}-18x+9+9
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-18x+18
Add 9 and 9 to get 18.