Solve for r
r=\frac{2+2\sqrt{2}i}{3}\approx 0.666666667+0.942809042i
r=\frac{-2\sqrt{2}i+2}{3}\approx 0.666666667-0.942809042i
Share
Copied to clipboard
3rr=\left(r-1\right)\times 4
Variable r cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by r\left(r-1\right), the least common multiple of r-1,r.
3r^{2}=\left(r-1\right)\times 4
Multiply r and r to get r^{2}.
3r^{2}=4r-4
Use the distributive property to multiply r-1 by 4.
3r^{2}-4r=-4
Subtract 4r from both sides.
3r^{2}-4r+4=0
Add 4 to both sides.
r=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\times 4}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-4\right)±\sqrt{16-4\times 3\times 4}}{2\times 3}
Square -4.
r=\frac{-\left(-4\right)±\sqrt{16-12\times 4}}{2\times 3}
Multiply -4 times 3.
r=\frac{-\left(-4\right)±\sqrt{16-48}}{2\times 3}
Multiply -12 times 4.
r=\frac{-\left(-4\right)±\sqrt{-32}}{2\times 3}
Add 16 to -48.
r=\frac{-\left(-4\right)±4\sqrt{2}i}{2\times 3}
Take the square root of -32.
r=\frac{4±4\sqrt{2}i}{2\times 3}
The opposite of -4 is 4.
r=\frac{4±4\sqrt{2}i}{6}
Multiply 2 times 3.
r=\frac{4+4\sqrt{2}i}{6}
Now solve the equation r=\frac{4±4\sqrt{2}i}{6} when ± is plus. Add 4 to 4i\sqrt{2}.
r=\frac{2+2\sqrt{2}i}{3}
Divide 4+4i\sqrt{2} by 6.
r=\frac{-4\sqrt{2}i+4}{6}
Now solve the equation r=\frac{4±4\sqrt{2}i}{6} when ± is minus. Subtract 4i\sqrt{2} from 4.
r=\frac{-2\sqrt{2}i+2}{3}
Divide 4-4i\sqrt{2} by 6.
r=\frac{2+2\sqrt{2}i}{3} r=\frac{-2\sqrt{2}i+2}{3}
The equation is now solved.
3rr=\left(r-1\right)\times 4
Variable r cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by r\left(r-1\right), the least common multiple of r-1,r.
3r^{2}=\left(r-1\right)\times 4
Multiply r and r to get r^{2}.
3r^{2}=4r-4
Use the distributive property to multiply r-1 by 4.
3r^{2}-4r=-4
Subtract 4r from both sides.
\frac{3r^{2}-4r}{3}=-\frac{4}{3}
Divide both sides by 3.
r^{2}-\frac{4}{3}r=-\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
r^{2}-\frac{4}{3}r+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{4}{3}r+\frac{4}{9}=-\frac{4}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{4}{3}r+\frac{4}{9}=-\frac{8}{9}
Add -\frac{4}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r-\frac{2}{3}\right)^{2}=-\frac{8}{9}
Factor r^{2}-\frac{4}{3}r+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{2}{3}\right)^{2}}=\sqrt{-\frac{8}{9}}
Take the square root of both sides of the equation.
r-\frac{2}{3}=\frac{2\sqrt{2}i}{3} r-\frac{2}{3}=-\frac{2\sqrt{2}i}{3}
Simplify.
r=\frac{2+2\sqrt{2}i}{3} r=\frac{-2\sqrt{2}i+2}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}