Solve for t
t = \frac{25}{16} = 1\frac{9}{16} = 1.5625
Share
Copied to clipboard
9+\left(4-2t\right)^{2}=\left(2t\right)^{2}
Calculate 3 to the power of 2 and get 9.
9+16-16t+4t^{2}=\left(2t\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-2t\right)^{2}.
25-16t+4t^{2}=\left(2t\right)^{2}
Add 9 and 16 to get 25.
25-16t+4t^{2}=2^{2}t^{2}
Expand \left(2t\right)^{2}.
25-16t+4t^{2}=4t^{2}
Calculate 2 to the power of 2 and get 4.
25-16t+4t^{2}-4t^{2}=0
Subtract 4t^{2} from both sides.
25-16t=0
Combine 4t^{2} and -4t^{2} to get 0.
-16t=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
t=\frac{-25}{-16}
Divide both sides by -16.
t=\frac{25}{16}
Fraction \frac{-25}{-16} can be simplified to \frac{25}{16} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}