Solve for d
d=-\frac{18}{n-1}
n\neq 1
Solve for n
n=\frac{d-18}{d}
d\neq 0
Share
Copied to clipboard
3=21+nd-d
Use the distributive property to multiply n-1 by d.
21+nd-d=3
Swap sides so that all variable terms are on the left hand side.
nd-d=3-21
Subtract 21 from both sides.
nd-d=-18
Subtract 21 from 3 to get -18.
\left(n-1\right)d=-18
Combine all terms containing d.
\frac{\left(n-1\right)d}{n-1}=-\frac{18}{n-1}
Divide both sides by n-1.
d=-\frac{18}{n-1}
Dividing by n-1 undoes the multiplication by n-1.
3=21+nd-d
Use the distributive property to multiply n-1 by d.
21+nd-d=3
Swap sides so that all variable terms are on the left hand side.
nd-d=3-21
Subtract 21 from both sides.
nd-d=-18
Subtract 21 from 3 to get -18.
nd=-18+d
Add d to both sides.
dn=d-18
The equation is in standard form.
\frac{dn}{d}=\frac{d-18}{d}
Divide both sides by d.
n=\frac{d-18}{d}
Dividing by d undoes the multiplication by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}