Verify
false
Share
Copied to clipboard
3=-\frac{9}{4}-5
Fraction \frac{9}{-4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
3=-\frac{9}{4}-\frac{20}{4}
Convert 5 to fraction \frac{20}{4}.
3=\frac{-9-20}{4}
Since -\frac{9}{4} and \frac{20}{4} have the same denominator, subtract them by subtracting their numerators.
3=-\frac{29}{4}
Subtract 20 from -9 to get -29.
\frac{12}{4}=-\frac{29}{4}
Convert 3 to fraction \frac{12}{4}.
\text{false}
Compare \frac{12}{4} and -\frac{29}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}