Solve for n_4
n_{4} = \frac{13}{2} = 6\frac{1}{2} = 6.5
Share
Copied to clipboard
3=\frac{55+n_{4}\times 4}{27}
Add 20 and 7 to get 27.
3=\frac{55}{27}+\frac{4}{27}n_{4}
Divide each term of 55+n_{4}\times 4 by 27 to get \frac{55}{27}+\frac{4}{27}n_{4}.
\frac{55}{27}+\frac{4}{27}n_{4}=3
Swap sides so that all variable terms are on the left hand side.
\frac{4}{27}n_{4}=3-\frac{55}{27}
Subtract \frac{55}{27} from both sides.
\frac{4}{27}n_{4}=\frac{81}{27}-\frac{55}{27}
Convert 3 to fraction \frac{81}{27}.
\frac{4}{27}n_{4}=\frac{81-55}{27}
Since \frac{81}{27} and \frac{55}{27} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{27}n_{4}=\frac{26}{27}
Subtract 55 from 81 to get 26.
n_{4}=\frac{26}{27}\times \frac{27}{4}
Multiply both sides by \frac{27}{4}, the reciprocal of \frac{4}{27}.
n_{4}=\frac{26\times 27}{27\times 4}
Multiply \frac{26}{27} times \frac{27}{4} by multiplying numerator times numerator and denominator times denominator.
n_{4}=\frac{26}{4}
Cancel out 27 in both numerator and denominator.
n_{4}=\frac{13}{2}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}