Solve for x
x=\frac{35}{37}\approx 0.945945946
Graph
Share
Copied to clipboard
\frac{3}{4}x+\frac{3}{4}-\frac{8}{3}=\frac{9}{2}-\frac{7}{6}\left(2x+3\right)
Use the distributive property to multiply \frac{3}{4} by x+1.
\frac{3}{4}x+\frac{9}{12}-\frac{32}{12}=\frac{9}{2}-\frac{7}{6}\left(2x+3\right)
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{8}{3} to fractions with denominator 12.
\frac{3}{4}x+\frac{9-32}{12}=\frac{9}{2}-\frac{7}{6}\left(2x+3\right)
Since \frac{9}{12} and \frac{32}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}-\frac{7}{6}\left(2x+3\right)
Subtract 32 from 9 to get -23.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}-\frac{7}{6}\times 2x-\frac{7}{6}\times 3
Use the distributive property to multiply -\frac{7}{6} by 2x+3.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}+\frac{-7\times 2}{6}x-\frac{7}{6}\times 3
Express -\frac{7}{6}\times 2 as a single fraction.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}+\frac{-14}{6}x-\frac{7}{6}\times 3
Multiply -7 and 2 to get -14.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}-\frac{7}{3}x-\frac{7}{6}\times 3
Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}-\frac{7}{3}x+\frac{-7\times 3}{6}
Express -\frac{7}{6}\times 3 as a single fraction.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}-\frac{7}{3}x+\frac{-21}{6}
Multiply -7 and 3 to get -21.
\frac{3}{4}x-\frac{23}{12}=\frac{9}{2}-\frac{7}{3}x-\frac{7}{2}
Reduce the fraction \frac{-21}{6} to lowest terms by extracting and canceling out 3.
\frac{3}{4}x-\frac{23}{12}=\frac{9-7}{2}-\frac{7}{3}x
Since \frac{9}{2} and \frac{7}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}x-\frac{23}{12}=\frac{2}{2}-\frac{7}{3}x
Subtract 7 from 9 to get 2.
\frac{3}{4}x-\frac{23}{12}=1-\frac{7}{3}x
Divide 2 by 2 to get 1.
\frac{3}{4}x-\frac{23}{12}+\frac{7}{3}x=1
Add \frac{7}{3}x to both sides.
\frac{37}{12}x-\frac{23}{12}=1
Combine \frac{3}{4}x and \frac{7}{3}x to get \frac{37}{12}x.
\frac{37}{12}x=1+\frac{23}{12}
Add \frac{23}{12} to both sides.
\frac{37}{12}x=\frac{12}{12}+\frac{23}{12}
Convert 1 to fraction \frac{12}{12}.
\frac{37}{12}x=\frac{12+23}{12}
Since \frac{12}{12} and \frac{23}{12} have the same denominator, add them by adding their numerators.
\frac{37}{12}x=\frac{35}{12}
Add 12 and 23 to get 35.
x=\frac{35}{12}\times \frac{12}{37}
Multiply both sides by \frac{12}{37}, the reciprocal of \frac{37}{12}.
x=\frac{35\times 12}{12\times 37}
Multiply \frac{35}{12} times \frac{12}{37} by multiplying numerator times numerator and denominator times denominator.
x=\frac{35}{37}
Cancel out 12 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}