Solve for y
y=7+3i
Share
Copied to clipboard
\left(-y\right)i=6-2i-\left(3+5i\right)
Subtract 3+5i from both sides.
\left(-y\right)i=6-3+\left(-2-5\right)i
Subtract 3+5i from 6-2i by subtracting corresponding real and imaginary parts.
\left(-y\right)i=3-7i
Subtract 3 from 6. Subtract 5 from -2.
-y=\frac{3-7i}{i}
Divide both sides by i.
-y=\frac{\left(3-7i\right)i}{1i^{2}}
Multiply both numerator and denominator of \frac{3-7i}{i} by imaginary unit i.
-y=\frac{\left(3-7i\right)i}{-1}
By definition, i^{2} is -1. Calculate the denominator.
-y=\frac{3i-7i^{2}}{-1}
Multiply 3-7i times i.
-y=\frac{3i-7\left(-1\right)}{-1}
By definition, i^{2} is -1.
-y=\frac{7+3i}{-1}
Do the multiplications in 3i-7\left(-1\right). Reorder the terms.
-y=-7-3i
Divide 7+3i by -1 to get -7-3i.
y=\frac{-7-3i}{-1}
Divide both sides by -1.
y=7+3i
Divide -7-3i by -1 to get 7+3i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}