Solve for x
x\geq \frac{35}{3}
Graph
Share
Copied to clipboard
3-\frac{6}{5}x\leq \frac{2}{3}-x
Combine \frac{4}{5}x and -2x to get -\frac{6}{5}x.
3-\frac{6}{5}x+x\leq \frac{2}{3}
Add x to both sides.
3-\frac{1}{5}x\leq \frac{2}{3}
Combine -\frac{6}{5}x and x to get -\frac{1}{5}x.
-\frac{1}{5}x\leq \frac{2}{3}-3
Subtract 3 from both sides.
-\frac{1}{5}x\leq \frac{2}{3}-\frac{9}{3}
Convert 3 to fraction \frac{9}{3}.
-\frac{1}{5}x\leq \frac{2-9}{3}
Since \frac{2}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{5}x\leq -\frac{7}{3}
Subtract 9 from 2 to get -7.
x\geq -\frac{7}{3}\left(-5\right)
Multiply both sides by -5, the reciprocal of -\frac{1}{5}. Since -\frac{1}{5} is negative, the inequality direction is changed.
x\geq \frac{-7\left(-5\right)}{3}
Express -\frac{7}{3}\left(-5\right) as a single fraction.
x\geq \frac{35}{3}
Multiply -7 and -5 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}