Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-28x^{2}+17x+3
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=17 ab=-28\times 3=-84
Factor the expression by grouping. First, the expression needs to be rewritten as -28x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,84 -2,42 -3,28 -4,21 -6,14 -7,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -84.
-1+84=83 -2+42=40 -3+28=25 -4+21=17 -6+14=8 -7+12=5
Calculate the sum for each pair.
a=21 b=-4
The solution is the pair that gives sum 17.
\left(-28x^{2}+21x\right)+\left(-4x+3\right)
Rewrite -28x^{2}+17x+3 as \left(-28x^{2}+21x\right)+\left(-4x+3\right).
-7x\left(4x-3\right)-\left(4x-3\right)
Factor out -7x in the first and -1 in the second group.
\left(4x-3\right)\left(-7x-1\right)
Factor out common term 4x-3 by using distributive property.
-28x^{2}+17x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\left(-28\right)\times 3}}{2\left(-28\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{289-4\left(-28\right)\times 3}}{2\left(-28\right)}
Square 17.
x=\frac{-17±\sqrt{289+112\times 3}}{2\left(-28\right)}
Multiply -4 times -28.
x=\frac{-17±\sqrt{289+336}}{2\left(-28\right)}
Multiply 112 times 3.
x=\frac{-17±\sqrt{625}}{2\left(-28\right)}
Add 289 to 336.
x=\frac{-17±25}{2\left(-28\right)}
Take the square root of 625.
x=\frac{-17±25}{-56}
Multiply 2 times -28.
x=\frac{8}{-56}
Now solve the equation x=\frac{-17±25}{-56} when ± is plus. Add -17 to 25.
x=-\frac{1}{7}
Reduce the fraction \frac{8}{-56} to lowest terms by extracting and canceling out 8.
x=-\frac{42}{-56}
Now solve the equation x=\frac{-17±25}{-56} when ± is minus. Subtract 25 from -17.
x=\frac{3}{4}
Reduce the fraction \frac{-42}{-56} to lowest terms by extracting and canceling out 14.
-28x^{2}+17x+3=-28\left(x-\left(-\frac{1}{7}\right)\right)\left(x-\frac{3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{7} for x_{1} and \frac{3}{4} for x_{2}.
-28x^{2}+17x+3=-28\left(x+\frac{1}{7}\right)\left(x-\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-28x^{2}+17x+3=-28\times \frac{-7x-1}{-7}\left(x-\frac{3}{4}\right)
Add \frac{1}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-28x^{2}+17x+3=-28\times \frac{-7x-1}{-7}\times \frac{-4x+3}{-4}
Subtract \frac{3}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-28x^{2}+17x+3=-28\times \frac{\left(-7x-1\right)\left(-4x+3\right)}{-7\left(-4\right)}
Multiply \frac{-7x-1}{-7} times \frac{-4x+3}{-4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-28x^{2}+17x+3=-28\times \frac{\left(-7x-1\right)\left(-4x+3\right)}{28}
Multiply -7 times -4.
-28x^{2}+17x+3=-\left(-7x-1\right)\left(-4x+3\right)
Cancel out 28, the greatest common factor in -28 and 28.