Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-4t^{2}+12t+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-12±\sqrt{144-4\left(-4\right)\times 3}}{2\left(-4\right)}
Square 12.
t=\frac{-12±\sqrt{144+16\times 3}}{2\left(-4\right)}
Multiply -4 times -4.
t=\frac{-12±\sqrt{144+48}}{2\left(-4\right)}
Multiply 16 times 3.
t=\frac{-12±\sqrt{192}}{2\left(-4\right)}
Add 144 to 48.
t=\frac{-12±8\sqrt{3}}{2\left(-4\right)}
Take the square root of 192.
t=\frac{-12±8\sqrt{3}}{-8}
Multiply 2 times -4.
t=\frac{8\sqrt{3}-12}{-8}
Now solve the equation t=\frac{-12±8\sqrt{3}}{-8} when ± is plus. Add -12 to 8\sqrt{3}.
t=\frac{3}{2}-\sqrt{3}
Divide -12+8\sqrt{3} by -8.
t=\frac{-8\sqrt{3}-12}{-8}
Now solve the equation t=\frac{-12±8\sqrt{3}}{-8} when ± is minus. Subtract 8\sqrt{3} from -12.
t=\sqrt{3}+\frac{3}{2}
Divide -12-8\sqrt{3} by -8.
-4t^{2}+12t+3=-4\left(t-\left(\frac{3}{2}-\sqrt{3}\right)\right)\left(t-\left(\sqrt{3}+\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2}-\sqrt{3} for x_{1} and \frac{3}{2}+\sqrt{3} for x_{2}.