Evaluate
\frac{176}{49}\approx 3.591836735
Factor
\frac{2 ^ {4} \cdot 11}{7 ^ {2}} = 3\frac{29}{49} = 3.5918367346938775
Share
Copied to clipboard
3+\frac{2}{7}\left(1-\frac{\frac{21}{4}}{\frac{3}{5}-\frac{10}{5}-\frac{7}{2}}\right)
Convert 2 to fraction \frac{10}{5}.
3+\frac{2}{7}\left(1-\frac{\frac{21}{4}}{\frac{3-10}{5}-\frac{7}{2}}\right)
Since \frac{3}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
3+\frac{2}{7}\left(1-\frac{\frac{21}{4}}{-\frac{7}{5}-\frac{7}{2}}\right)
Subtract 10 from 3 to get -7.
3+\frac{2}{7}\left(1-\frac{\frac{21}{4}}{-\frac{14}{10}-\frac{35}{10}}\right)
Least common multiple of 5 and 2 is 10. Convert -\frac{7}{5} and \frac{7}{2} to fractions with denominator 10.
3+\frac{2}{7}\left(1-\frac{\frac{21}{4}}{\frac{-14-35}{10}}\right)
Since -\frac{14}{10} and \frac{35}{10} have the same denominator, subtract them by subtracting their numerators.
3+\frac{2}{7}\left(1-\frac{\frac{21}{4}}{-\frac{49}{10}}\right)
Subtract 35 from -14 to get -49.
3+\frac{2}{7}\left(1-\frac{21}{4}\left(-\frac{10}{49}\right)\right)
Divide \frac{21}{4} by -\frac{49}{10} by multiplying \frac{21}{4} by the reciprocal of -\frac{49}{10}.
3+\frac{2}{7}\left(1-\frac{21\left(-10\right)}{4\times 49}\right)
Multiply \frac{21}{4} times -\frac{10}{49} by multiplying numerator times numerator and denominator times denominator.
3+\frac{2}{7}\left(1-\frac{-210}{196}\right)
Do the multiplications in the fraction \frac{21\left(-10\right)}{4\times 49}.
3+\frac{2}{7}\left(1-\left(-\frac{15}{14}\right)\right)
Reduce the fraction \frac{-210}{196} to lowest terms by extracting and canceling out 14.
3+\frac{2}{7}\left(1+\frac{15}{14}\right)
The opposite of -\frac{15}{14} is \frac{15}{14}.
3+\frac{2}{7}\left(\frac{14}{14}+\frac{15}{14}\right)
Convert 1 to fraction \frac{14}{14}.
3+\frac{2}{7}\times \frac{14+15}{14}
Since \frac{14}{14} and \frac{15}{14} have the same denominator, add them by adding their numerators.
3+\frac{2}{7}\times \frac{29}{14}
Add 14 and 15 to get 29.
3+\frac{2\times 29}{7\times 14}
Multiply \frac{2}{7} times \frac{29}{14} by multiplying numerator times numerator and denominator times denominator.
3+\frac{58}{98}
Do the multiplications in the fraction \frac{2\times 29}{7\times 14}.
3+\frac{29}{49}
Reduce the fraction \frac{58}{98} to lowest terms by extracting and canceling out 2.
\frac{147}{49}+\frac{29}{49}
Convert 3 to fraction \frac{147}{49}.
\frac{147+29}{49}
Since \frac{147}{49} and \frac{29}{49} have the same denominator, add them by adding their numerators.
\frac{176}{49}
Add 147 and 29 to get 176.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}