Solve for x
x=-\frac{3z}{2}-2y+\frac{17}{2}
Solve for y
y=-\frac{x}{2}-\frac{3z}{4}+\frac{17}{4}
Share
Copied to clipboard
2x+4y+3z=8+9
Add 9 to both sides.
2x+4y+3z=17
Add 8 and 9 to get 17.
2x+3z=17-4y
Subtract 4y from both sides.
2x=17-4y-3z
Subtract 3z from both sides.
2x=17-3z-4y
The equation is in standard form.
\frac{2x}{2}=\frac{17-3z-4y}{2}
Divide both sides by 2.
x=\frac{17-3z-4y}{2}
Dividing by 2 undoes the multiplication by 2.
x=-\frac{3z}{2}-2y+\frac{17}{2}
Divide 17-4y-3z by 2.
-9+4y+3z=8-2x
Subtract 2x from both sides.
4y+3z=8-2x+9
Add 9 to both sides.
4y+3z=17-2x
Add 8 and 9 to get 17.
4y=17-2x-3z
Subtract 3z from both sides.
4y=17-3z-2x
The equation is in standard form.
\frac{4y}{4}=\frac{17-3z-2x}{4}
Divide both sides by 4.
y=\frac{17-3z-2x}{4}
Dividing by 4 undoes the multiplication by 4.
y=-\frac{x}{2}-\frac{3z}{4}+\frac{17}{4}
Divide 17-2x-3z by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}