Solve for x
x=-6
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
4x\left(x+6\right)-8\left(x+6\right)=-\left(x+6\right)
Multiply both sides of the equation by 2.
4x^{2}+24x-8\left(x+6\right)=-\left(x+6\right)
Use the distributive property to multiply 4x by x+6.
4x^{2}+24x-8x-48=-\left(x+6\right)
Use the distributive property to multiply -8 by x+6.
4x^{2}+16x-48=-\left(x+6\right)
Combine 24x and -8x to get 16x.
4x^{2}+16x-48=-x-6
To find the opposite of x+6, find the opposite of each term.
4x^{2}+16x-48+x=-6
Add x to both sides.
4x^{2}+17x-48=-6
Combine 16x and x to get 17x.
4x^{2}+17x-48+6=0
Add 6 to both sides.
4x^{2}+17x-42=0
Add -48 and 6 to get -42.
x=\frac{-17±\sqrt{17^{2}-4\times 4\left(-42\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 17 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 4\left(-42\right)}}{2\times 4}
Square 17.
x=\frac{-17±\sqrt{289-16\left(-42\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-17±\sqrt{289+672}}{2\times 4}
Multiply -16 times -42.
x=\frac{-17±\sqrt{961}}{2\times 4}
Add 289 to 672.
x=\frac{-17±31}{2\times 4}
Take the square root of 961.
x=\frac{-17±31}{8}
Multiply 2 times 4.
x=\frac{14}{8}
Now solve the equation x=\frac{-17±31}{8} when ± is plus. Add -17 to 31.
x=\frac{7}{4}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
x=-\frac{48}{8}
Now solve the equation x=\frac{-17±31}{8} when ± is minus. Subtract 31 from -17.
x=-6
Divide -48 by 8.
x=\frac{7}{4} x=-6
The equation is now solved.
4x\left(x+6\right)-8\left(x+6\right)=-\left(x+6\right)
Multiply both sides of the equation by 2.
4x^{2}+24x-8\left(x+6\right)=-\left(x+6\right)
Use the distributive property to multiply 4x by x+6.
4x^{2}+24x-8x-48=-\left(x+6\right)
Use the distributive property to multiply -8 by x+6.
4x^{2}+16x-48=-\left(x+6\right)
Combine 24x and -8x to get 16x.
4x^{2}+16x-48=-x-6
To find the opposite of x+6, find the opposite of each term.
4x^{2}+16x-48+x=-6
Add x to both sides.
4x^{2}+17x-48=-6
Combine 16x and x to get 17x.
4x^{2}+17x=-6+48
Add 48 to both sides.
4x^{2}+17x=42
Add -6 and 48 to get 42.
\frac{4x^{2}+17x}{4}=\frac{42}{4}
Divide both sides by 4.
x^{2}+\frac{17}{4}x=\frac{42}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{17}{4}x=\frac{21}{2}
Reduce the fraction \frac{42}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{17}{4}x+\left(\frac{17}{8}\right)^{2}=\frac{21}{2}+\left(\frac{17}{8}\right)^{2}
Divide \frac{17}{4}, the coefficient of the x term, by 2 to get \frac{17}{8}. Then add the square of \frac{17}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{4}x+\frac{289}{64}=\frac{21}{2}+\frac{289}{64}
Square \frac{17}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{4}x+\frac{289}{64}=\frac{961}{64}
Add \frac{21}{2} to \frac{289}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{17}{8}\right)^{2}=\frac{961}{64}
Factor x^{2}+\frac{17}{4}x+\frac{289}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{8}\right)^{2}}=\sqrt{\frac{961}{64}}
Take the square root of both sides of the equation.
x+\frac{17}{8}=\frac{31}{8} x+\frac{17}{8}=-\frac{31}{8}
Simplify.
x=\frac{7}{4} x=-6
Subtract \frac{17}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}