Solve for x
x=-\frac{1}{23}\approx -0.043478261
Graph
Share
Copied to clipboard
2x\left(\frac{3}{8}+\frac{40}{8}\right)=5x-\frac{2}{8}
Convert 5 to fraction \frac{40}{8}.
2x\times \frac{3+40}{8}=5x-\frac{2}{8}
Since \frac{3}{8} and \frac{40}{8} have the same denominator, add them by adding their numerators.
2x\times \frac{43}{8}=5x-\frac{2}{8}
Add 3 and 40 to get 43.
\frac{2\times 43}{8}x=5x-\frac{2}{8}
Express 2\times \frac{43}{8} as a single fraction.
\frac{86}{8}x=5x-\frac{2}{8}
Multiply 2 and 43 to get 86.
\frac{43}{4}x=5x-\frac{2}{8}
Reduce the fraction \frac{86}{8} to lowest terms by extracting and canceling out 2.
\frac{43}{4}x=5x-\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{43}{4}x-5x=-\frac{1}{4}
Subtract 5x from both sides.
\frac{23}{4}x=-\frac{1}{4}
Combine \frac{43}{4}x and -5x to get \frac{23}{4}x.
x=-\frac{1}{4}\times \frac{4}{23}
Multiply both sides by \frac{4}{23}, the reciprocal of \frac{23}{4}.
x=\frac{-4}{4\times 23}
Multiply -\frac{1}{4} times \frac{4}{23} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1}{23}
Cancel out 4 in both numerator and denominator.
x=-\frac{1}{23}
Fraction \frac{-1}{23} can be rewritten as -\frac{1}{23} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}