Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-5=\sqrt{4x}
Subtract 5 from both sides of the equation.
\left(2x-5\right)^{2}=\left(\sqrt{4x}\right)^{2}
Square both sides of the equation.
4x^{2}-20x+25=\left(\sqrt{4x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25=4x
Calculate \sqrt{4x} to the power of 2 and get 4x.
4x^{2}-20x+25-4x=0
Subtract 4x from both sides.
4x^{2}-24x+25=0
Combine -20x and -4x to get -24x.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\times 25}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -24 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 4\times 25}}{2\times 4}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-16\times 25}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-24\right)±\sqrt{576-400}}{2\times 4}
Multiply -16 times 25.
x=\frac{-\left(-24\right)±\sqrt{176}}{2\times 4}
Add 576 to -400.
x=\frac{-\left(-24\right)±4\sqrt{11}}{2\times 4}
Take the square root of 176.
x=\frac{24±4\sqrt{11}}{2\times 4}
The opposite of -24 is 24.
x=\frac{24±4\sqrt{11}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{11}+24}{8}
Now solve the equation x=\frac{24±4\sqrt{11}}{8} when ± is plus. Add 24 to 4\sqrt{11}.
x=\frac{\sqrt{11}}{2}+3
Divide 24+4\sqrt{11} by 8.
x=\frac{24-4\sqrt{11}}{8}
Now solve the equation x=\frac{24±4\sqrt{11}}{8} when ± is minus. Subtract 4\sqrt{11} from 24.
x=-\frac{\sqrt{11}}{2}+3
Divide 24-4\sqrt{11} by 8.
x=\frac{\sqrt{11}}{2}+3 x=-\frac{\sqrt{11}}{2}+3
The equation is now solved.
2\left(\frac{\sqrt{11}}{2}+3\right)=5+\sqrt{4\left(\frac{\sqrt{11}}{2}+3\right)}
Substitute \frac{\sqrt{11}}{2}+3 for x in the equation 2x=5+\sqrt{4x}.
11^{\frac{1}{2}}+6=6+11^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{11}}{2}+3 satisfies the equation.
2\left(-\frac{\sqrt{11}}{2}+3\right)=5+\sqrt{4\left(-\frac{\sqrt{11}}{2}+3\right)}
Substitute -\frac{\sqrt{11}}{2}+3 for x in the equation 2x=5+\sqrt{4x}.
-11^{\frac{1}{2}}+6=4+11^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{11}}{2}+3 does not satisfy the equation.
x=\frac{\sqrt{11}}{2}+3
Equation 2x-5=\sqrt{4x} has a unique solution.