Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
\left(2x\right)^{2}=\left(\sqrt{\left(1-x\right)\left(6-x\right)}\right)^{2}
Square both sides of the equation.
2^{2}x^{2}=\left(\sqrt{\left(1-x\right)\left(6-x\right)}\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=\left(\sqrt{\left(1-x\right)\left(6-x\right)}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=\left(\sqrt{6-7x+x^{2}}\right)^{2}
Use the distributive property to multiply 1-x by 6-x and combine like terms.
4x^{2}=6-7x+x^{2}
Calculate \sqrt{6-7x+x^{2}} to the power of 2 and get 6-7x+x^{2}.
4x^{2}-6=-7x+x^{2}
Subtract 6 from both sides.
4x^{2}-6+7x=x^{2}
Add 7x to both sides.
4x^{2}-6+7x-x^{2}=0
Subtract x^{2} from both sides.
3x^{2}-6+7x=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+7x-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=3\left(-6\right)=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=-2 b=9
The solution is the pair that gives sum 7.
\left(3x^{2}-2x\right)+\left(9x-6\right)
Rewrite 3x^{2}+7x-6 as \left(3x^{2}-2x\right)+\left(9x-6\right).
x\left(3x-2\right)+3\left(3x-2\right)
Factor out x in the first and 3 in the second group.
\left(3x-2\right)\left(x+3\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=-3
To find equation solutions, solve 3x-2=0 and x+3=0.
2\times \frac{2}{3}=\sqrt{\left(1-\frac{2}{3}\right)\left(6-\frac{2}{3}\right)}
Substitute \frac{2}{3} for x in the equation 2x=\sqrt{\left(1-x\right)\left(6-x\right)}.
\frac{4}{3}=\frac{4}{3}
Simplify. The value x=\frac{2}{3} satisfies the equation.
2\left(-3\right)=\sqrt{\left(1-\left(-3\right)\right)\left(6-\left(-3\right)\right)}
Substitute -3 for x in the equation 2x=\sqrt{\left(1-x\right)\left(6-x\right)}.
-6=6
Simplify. The value x=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{2}{3}
Equation 2x=\sqrt{\left(1-x\right)\left(6-x\right)} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}