Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+6\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
4x^{2}+24x+36=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+6\right)^{2}.
4x^{2}+24x+36=x
Calculate \sqrt{x} to the power of 2 and get x.
4x^{2}+24x+36-x=0
Subtract x from both sides.
4x^{2}+23x+36=0
Combine 24x and -x to get 23x.
x=\frac{-23±\sqrt{23^{2}-4\times 4\times 36}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 23 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\times 4\times 36}}{2\times 4}
Square 23.
x=\frac{-23±\sqrt{529-16\times 36}}{2\times 4}
Multiply -4 times 4.
x=\frac{-23±\sqrt{529-576}}{2\times 4}
Multiply -16 times 36.
x=\frac{-23±\sqrt{-47}}{2\times 4}
Add 529 to -576.
x=\frac{-23±\sqrt{47}i}{2\times 4}
Take the square root of -47.
x=\frac{-23±\sqrt{47}i}{8}
Multiply 2 times 4.
x=\frac{-23+\sqrt{47}i}{8}
Now solve the equation x=\frac{-23±\sqrt{47}i}{8} when ± is plus. Add -23 to i\sqrt{47}.
x=\frac{-\sqrt{47}i-23}{8}
Now solve the equation x=\frac{-23±\sqrt{47}i}{8} when ± is minus. Subtract i\sqrt{47} from -23.
x=\frac{-23+\sqrt{47}i}{8} x=\frac{-\sqrt{47}i-23}{8}
The equation is now solved.
2\times \frac{-23+\sqrt{47}i}{8}+6=\sqrt{\frac{-23+\sqrt{47}i}{8}}
Substitute \frac{-23+\sqrt{47}i}{8} for x in the equation 2x+6=\sqrt{x}.
\frac{1}{4}+\frac{1}{4}i\times 47^{\frac{1}{2}}=\frac{1}{4}+\frac{1}{4}i\times 47^{\frac{1}{2}}
Simplify. The value x=\frac{-23+\sqrt{47}i}{8} satisfies the equation.
2\times \frac{-\sqrt{47}i-23}{8}+6=\sqrt{\frac{-\sqrt{47}i-23}{8}}
Substitute \frac{-\sqrt{47}i-23}{8} for x in the equation 2x+6=\sqrt{x}.
-\frac{1}{4}i\times 47^{\frac{1}{2}}+\frac{1}{4}=-\left(\frac{1}{4}-\frac{1}{4}i\times 47^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{47}i-23}{8} does not satisfy the equation.
x=\frac{-23+\sqrt{47}i}{8}
Equation 2x+6=\sqrt{x} has a unique solution.