Solve for x
x=\sqrt{3}-\sqrt{2}\approx 0.317837245
Graph
Share
Copied to clipboard
2x+\sqrt{6}-\sqrt{2}x-\left(2-\sqrt{6}x\right)=\sqrt{2}
Subtract 2-\sqrt{6}x from both sides.
2x+\sqrt{6}-\sqrt{2}x-2-\left(-\sqrt{6}x\right)=\sqrt{2}
To find the opposite of 2-\sqrt{6}x, find the opposite of each term.
2x+\sqrt{6}-\sqrt{2}x-2+\sqrt{6}x=\sqrt{2}
The opposite of -\sqrt{6}x is \sqrt{6}x.
2x-\sqrt{2}x-2+\sqrt{6}x=\sqrt{2}-\sqrt{6}
Subtract \sqrt{6} from both sides.
2x-\sqrt{2}x+\sqrt{6}x=\sqrt{2}-\sqrt{6}+2
Add 2 to both sides.
\left(2-\sqrt{2}+\sqrt{6}\right)x=\sqrt{2}-\sqrt{6}+2
Combine all terms containing x.
\left(\sqrt{6}+2-\sqrt{2}\right)x=\sqrt{2}+2-\sqrt{6}
The equation is in standard form.
\frac{\left(\sqrt{6}+2-\sqrt{2}\right)x}{\sqrt{6}+2-\sqrt{2}}=\frac{\sqrt{2}+2-\sqrt{6}}{\sqrt{6}+2-\sqrt{2}}
Divide both sides by 2-\sqrt{2}+\sqrt{6}.
x=\frac{\sqrt{2}+2-\sqrt{6}}{\sqrt{6}+2-\sqrt{2}}
Dividing by 2-\sqrt{2}+\sqrt{6} undoes the multiplication by 2-\sqrt{2}+\sqrt{6}.
x=\sqrt{3}-\sqrt{2}
Divide \sqrt{2}-\sqrt{6}+2 by 2-\sqrt{2}+\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}