Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=115.52
Multiply x and x to get x^{2}.
x^{2}=\frac{115.52}{2}
Divide both sides by 2.
x^{2}=\frac{11552}{200}
Expand \frac{115.52}{2} by multiplying both numerator and the denominator by 100.
x^{2}=\frac{1444}{25}
Reduce the fraction \frac{11552}{200} to lowest terms by extracting and canceling out 8.
x=\frac{38}{5} x=-\frac{38}{5}
Take the square root of both sides of the equation.
2x^{2}=115.52
Multiply x and x to get x^{2}.
2x^{2}-115.52=0
Subtract 115.52 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-115.52\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -115.52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-115.52\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-115.52\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{924.16}}{2\times 2}
Multiply -8 times -115.52.
x=\frac{0±\frac{152}{5}}{2\times 2}
Take the square root of 924.16.
x=\frac{0±\frac{152}{5}}{4}
Multiply 2 times 2.
x=\frac{38}{5}
Now solve the equation x=\frac{0±\frac{152}{5}}{4} when ± is plus.
x=-\frac{38}{5}
Now solve the equation x=\frac{0±\frac{152}{5}}{4} when ± is minus.
x=\frac{38}{5} x=-\frac{38}{5}
The equation is now solved.