Solve for x
x=18\sqrt{11}-54\approx 5.699246226
x=-18\sqrt{11}-54\approx -113.699246226
Graph
Share
Copied to clipboard
\frac{2x}{3}x=72\left(6-x\right)
Multiply both sides of the equation by 9.
\frac{2xx}{3}=72\left(6-x\right)
Express \frac{2x}{3}x as a single fraction.
\frac{2xx}{3}=432-72x
Use the distributive property to multiply 72 by 6-x.
\frac{2x^{2}}{3}=432-72x
Multiply x and x to get x^{2}.
\frac{2x^{2}}{3}-432=-72x
Subtract 432 from both sides.
\frac{2x^{2}}{3}-432+72x=0
Add 72x to both sides.
2x^{2}-1296+216x=0
Multiply both sides of the equation by 3.
2x^{2}+216x-1296=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-216±\sqrt{216^{2}-4\times 2\left(-1296\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 216 for b, and -1296 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-216±\sqrt{46656-4\times 2\left(-1296\right)}}{2\times 2}
Square 216.
x=\frac{-216±\sqrt{46656-8\left(-1296\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-216±\sqrt{46656+10368}}{2\times 2}
Multiply -8 times -1296.
x=\frac{-216±\sqrt{57024}}{2\times 2}
Add 46656 to 10368.
x=\frac{-216±72\sqrt{11}}{2\times 2}
Take the square root of 57024.
x=\frac{-216±72\sqrt{11}}{4}
Multiply 2 times 2.
x=\frac{72\sqrt{11}-216}{4}
Now solve the equation x=\frac{-216±72\sqrt{11}}{4} when ± is plus. Add -216 to 72\sqrt{11}.
x=18\sqrt{11}-54
Divide -216+72\sqrt{11} by 4.
x=\frac{-72\sqrt{11}-216}{4}
Now solve the equation x=\frac{-216±72\sqrt{11}}{4} when ± is minus. Subtract 72\sqrt{11} from -216.
x=-18\sqrt{11}-54
Divide -216-72\sqrt{11} by 4.
x=18\sqrt{11}-54 x=-18\sqrt{11}-54
The equation is now solved.
\frac{2x}{3}x=72\left(6-x\right)
Multiply both sides of the equation by 9.
\frac{2xx}{3}=72\left(6-x\right)
Express \frac{2x}{3}x as a single fraction.
\frac{2xx}{3}=432-72x
Use the distributive property to multiply 72 by 6-x.
\frac{2x^{2}}{3}=432-72x
Multiply x and x to get x^{2}.
\frac{2x^{2}}{3}+72x=432
Add 72x to both sides.
2x^{2}+216x=1296
Multiply both sides of the equation by 3.
\frac{2x^{2}+216x}{2}=\frac{1296}{2}
Divide both sides by 2.
x^{2}+\frac{216}{2}x=\frac{1296}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+108x=\frac{1296}{2}
Divide 216 by 2.
x^{2}+108x=648
Divide 1296 by 2.
x^{2}+108x+54^{2}=648+54^{2}
Divide 108, the coefficient of the x term, by 2 to get 54. Then add the square of 54 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+108x+2916=648+2916
Square 54.
x^{2}+108x+2916=3564
Add 648 to 2916.
\left(x+54\right)^{2}=3564
Factor x^{2}+108x+2916. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+54\right)^{2}}=\sqrt{3564}
Take the square root of both sides of the equation.
x+54=18\sqrt{11} x+54=-18\sqrt{11}
Simplify.
x=18\sqrt{11}-54 x=-18\sqrt{11}-54
Subtract 54 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}