Solve for a
a = -\frac{20}{11} = -1\frac{9}{11} \approx -1.818181818
Share
Copied to clipboard
2a-8a-1-\left(a+2\right)\times 5=9
To find the opposite of 8a+1, find the opposite of each term.
-6a-1-\left(a+2\right)\times 5=9
Combine 2a and -8a to get -6a.
-6a-1-\left(5a+10\right)=9
Use the distributive property to multiply a+2 by 5.
-6a-1-5a-10=9
To find the opposite of 5a+10, find the opposite of each term.
-11a-1-10=9
Combine -6a and -5a to get -11a.
-11a-11=9
Subtract 10 from -1 to get -11.
-11a=9+11
Add 11 to both sides.
-11a=20
Add 9 and 11 to get 20.
a=\frac{20}{-11}
Divide both sides by -11.
a=-\frac{20}{11}
Fraction \frac{20}{-11} can be rewritten as -\frac{20}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}