Solve for a
a = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
Share
Copied to clipboard
2a=\frac{4}{5}a+\frac{4}{5}\times 7
Use the distributive property to multiply \frac{4}{5} by a+7.
2a=\frac{4}{5}a+\frac{4\times 7}{5}
Express \frac{4}{5}\times 7 as a single fraction.
2a=\frac{4}{5}a+\frac{28}{5}
Multiply 4 and 7 to get 28.
2a-\frac{4}{5}a=\frac{28}{5}
Subtract \frac{4}{5}a from both sides.
\frac{6}{5}a=\frac{28}{5}
Combine 2a and -\frac{4}{5}a to get \frac{6}{5}a.
a=\frac{28}{5}\times \frac{5}{6}
Multiply both sides by \frac{5}{6}, the reciprocal of \frac{6}{5}.
a=\frac{28\times 5}{5\times 6}
Multiply \frac{28}{5} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
a=\frac{28}{6}
Cancel out 5 in both numerator and denominator.
a=\frac{14}{3}
Reduce the fraction \frac{28}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}