Evaluate
\frac{299}{10}=29.9
Factor
\frac{13 \cdot 23}{2 \cdot 5} = 29\frac{9}{10} = 29.9
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)299}\\\end{array}
Use the 1^{st} digit 2 from dividend 299
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)299}\\\end{array}
Since 2 is less than 10, use the next digit 9 from dividend 299 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)299}\\\end{array}
Use the 2^{nd} digit 9 from dividend 299
\begin{array}{l}\phantom{10)}02\phantom{4}\\10\overline{)299}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}9\\\end{array}
Find closest multiple of 10 to 29. We see that 2 \times 10 = 20 is the nearest. Now subtract 20 from 29 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{10)}02\phantom{5}\\10\overline{)299}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}99\\\end{array}
Use the 3^{rd} digit 9 from dividend 299
\begin{array}{l}\phantom{10)}029\phantom{6}\\10\overline{)299}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}99\\\phantom{10)}\underline{\phantom{9}90\phantom{}}\\\phantom{10)99}9\\\end{array}
Find closest multiple of 10 to 99. We see that 9 \times 10 = 90 is the nearest. Now subtract 90 from 99 to get reminder 9. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }9
Since 9 is less than 10, stop the division. The reminder is 9. The topmost line 029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}