Evaluate
\frac{2981}{150}\approx 19.873333333
Factor
\frac{11 \cdot 271}{2 \cdot 3 \cdot 5 ^ {2}} = 19\frac{131}{150} = 19.873333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)2981}\\\end{array}
Use the 1^{st} digit 2 from dividend 2981
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)2981}\\\end{array}
Since 2 is less than 150, use the next digit 9 from dividend 2981 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)2981}\\\end{array}
Use the 2^{nd} digit 9 from dividend 2981
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)2981}\\\end{array}
Since 29 is less than 150, use the next digit 8 from dividend 2981 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)2981}\\\end{array}
Use the 3^{rd} digit 8 from dividend 2981
\begin{array}{l}\phantom{150)}001\phantom{6}\\150\overline{)2981}\\\phantom{150)}\underline{\phantom{}150\phantom{9}}\\\phantom{150)}148\\\end{array}
Find closest multiple of 150 to 298. We see that 1 \times 150 = 150 is the nearest. Now subtract 150 from 298 to get reminder 148. Add 1 to quotient.
\begin{array}{l}\phantom{150)}001\phantom{7}\\150\overline{)2981}\\\phantom{150)}\underline{\phantom{}150\phantom{9}}\\\phantom{150)}1481\\\end{array}
Use the 4^{th} digit 1 from dividend 2981
\begin{array}{l}\phantom{150)}0019\phantom{8}\\150\overline{)2981}\\\phantom{150)}\underline{\phantom{}150\phantom{9}}\\\phantom{150)}1481\\\phantom{150)}\underline{\phantom{}1350\phantom{}}\\\phantom{150)9}131\\\end{array}
Find closest multiple of 150 to 1481. We see that 9 \times 150 = 1350 is the nearest. Now subtract 1350 from 1481 to get reminder 131. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }131
Since 131 is less than 150, stop the division. The reminder is 131. The topmost line 0019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}