Evaluate
\frac{148}{15}\approx 9.866666667
Factor
\frac{2 ^ {2} \cdot 37}{3 \cdot 5} = 9\frac{13}{15} = 9.866666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)296}\\\end{array}
Use the 1^{st} digit 2 from dividend 296
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)296}\\\end{array}
Since 2 is less than 30, use the next digit 9 from dividend 296 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)296}\\\end{array}
Use the 2^{nd} digit 9 from dividend 296
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)296}\\\end{array}
Since 29 is less than 30, use the next digit 6 from dividend 296 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)296}\\\end{array}
Use the 3^{rd} digit 6 from dividend 296
\begin{array}{l}\phantom{30)}009\phantom{6}\\30\overline{)296}\\\phantom{30)}\underline{\phantom{}270\phantom{}}\\\phantom{30)9}26\\\end{array}
Find closest multiple of 30 to 296. We see that 9 \times 30 = 270 is the nearest. Now subtract 270 from 296 to get reminder 26. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }26
Since 26 is less than 30, stop the division. The reminder is 26. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}