Evaluate
\frac{2937}{325}\approx 9.036923077
Factor
\frac{3 \cdot 11 \cdot 89}{5 ^ {2} \cdot 13} = 9\frac{12}{325} = 9.036923076923078
Share
Copied to clipboard
\begin{array}{l}\phantom{325)}\phantom{1}\\325\overline{)2937}\\\end{array}
Use the 1^{st} digit 2 from dividend 2937
\begin{array}{l}\phantom{325)}0\phantom{2}\\325\overline{)2937}\\\end{array}
Since 2 is less than 325, use the next digit 9 from dividend 2937 and add 0 to the quotient
\begin{array}{l}\phantom{325)}0\phantom{3}\\325\overline{)2937}\\\end{array}
Use the 2^{nd} digit 9 from dividend 2937
\begin{array}{l}\phantom{325)}00\phantom{4}\\325\overline{)2937}\\\end{array}
Since 29 is less than 325, use the next digit 3 from dividend 2937 and add 0 to the quotient
\begin{array}{l}\phantom{325)}00\phantom{5}\\325\overline{)2937}\\\end{array}
Use the 3^{rd} digit 3 from dividend 2937
\begin{array}{l}\phantom{325)}000\phantom{6}\\325\overline{)2937}\\\end{array}
Since 293 is less than 325, use the next digit 7 from dividend 2937 and add 0 to the quotient
\begin{array}{l}\phantom{325)}000\phantom{7}\\325\overline{)2937}\\\end{array}
Use the 4^{th} digit 7 from dividend 2937
\begin{array}{l}\phantom{325)}0009\phantom{8}\\325\overline{)2937}\\\phantom{325)}\underline{\phantom{}2925\phantom{}}\\\phantom{325)99}12\\\end{array}
Find closest multiple of 325 to 2937. We see that 9 \times 325 = 2925 is the nearest. Now subtract 2925 from 2937 to get reminder 12. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }12
Since 12 is less than 325, stop the division. The reminder is 12. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}