Evaluate
\frac{293}{18}\approx 16.277777778
Factor
\frac{293}{2 \cdot 3 ^ {2}} = 16\frac{5}{18} = 16.27777777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)293}\\\end{array}
Use the 1^{st} digit 2 from dividend 293
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)293}\\\end{array}
Since 2 is less than 18, use the next digit 9 from dividend 293 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)293}\\\end{array}
Use the 2^{nd} digit 9 from dividend 293
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)293}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}11\\\end{array}
Find closest multiple of 18 to 29. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 29 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)293}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}113\\\end{array}
Use the 3^{rd} digit 3 from dividend 293
\begin{array}{l}\phantom{18)}016\phantom{6}\\18\overline{)293}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}113\\\phantom{18)}\underline{\phantom{}108\phantom{}}\\\phantom{18)99}5\\\end{array}
Find closest multiple of 18 to 113. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 113 to get reminder 5. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }5
Since 5 is less than 18, stop the division. The reminder is 5. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}