Evaluate
24.3
Factor
\frac{3 ^ {5}}{2 \cdot 5} = 24\frac{3}{10} = 24.3
Share
Copied to clipboard
29.5-\frac{\left(\frac{2}{5}+\frac{1}{4}\right)\times 15}{\frac{1\times 8+7}{8}}
Convert decimal number 0.4 to fraction \frac{4}{10}. Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
29.5-\frac{\left(\frac{8}{20}+\frac{5}{20}\right)\times 15}{\frac{1\times 8+7}{8}}
Least common multiple of 5 and 4 is 20. Convert \frac{2}{5} and \frac{1}{4} to fractions with denominator 20.
29.5-\frac{\frac{8+5}{20}\times 15}{\frac{1\times 8+7}{8}}
Since \frac{8}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
29.5-\frac{\frac{13}{20}\times 15}{\frac{1\times 8+7}{8}}
Add 8 and 5 to get 13.
29.5-\frac{\frac{13\times 15}{20}}{\frac{1\times 8+7}{8}}
Express \frac{13}{20}\times 15 as a single fraction.
29.5-\frac{\frac{195}{20}}{\frac{1\times 8+7}{8}}
Multiply 13 and 15 to get 195.
29.5-\frac{\frac{39}{4}}{\frac{1\times 8+7}{8}}
Reduce the fraction \frac{195}{20} to lowest terms by extracting and canceling out 5.
29.5-\frac{\frac{39}{4}}{\frac{8+7}{8}}
Multiply 1 and 8 to get 8.
29.5-\frac{\frac{39}{4}}{\frac{15}{8}}
Add 8 and 7 to get 15.
29.5-\frac{39}{4}\times \frac{8}{15}
Divide \frac{39}{4} by \frac{15}{8} by multiplying \frac{39}{4} by the reciprocal of \frac{15}{8}.
29.5-\frac{39\times 8}{4\times 15}
Multiply \frac{39}{4} times \frac{8}{15} by multiplying numerator times numerator and denominator times denominator.
29.5-\frac{312}{60}
Do the multiplications in the fraction \frac{39\times 8}{4\times 15}.
29.5-\frac{26}{5}
Reduce the fraction \frac{312}{60} to lowest terms by extracting and canceling out 12.
\frac{59}{2}-\frac{26}{5}
Convert decimal number 29.5 to fraction \frac{295}{10}. Reduce the fraction \frac{295}{10} to lowest terms by extracting and canceling out 5.
\frac{295}{10}-\frac{52}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{59}{2} and \frac{26}{5} to fractions with denominator 10.
\frac{295-52}{10}
Since \frac{295}{10} and \frac{52}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{243}{10}
Subtract 52 from 295 to get 243.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}