Solve for x
x = \frac{5 \sqrt{241} - 43}{29} \approx 1.193823223
x=\frac{-5\sqrt{241}-43}{29}\approx -4.159340465
Graph
Share
Copied to clipboard
29x^{2}+86x-144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-86±\sqrt{86^{2}-4\times 29\left(-144\right)}}{2\times 29}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 29 for a, 86 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-86±\sqrt{7396-4\times 29\left(-144\right)}}{2\times 29}
Square 86.
x=\frac{-86±\sqrt{7396-116\left(-144\right)}}{2\times 29}
Multiply -4 times 29.
x=\frac{-86±\sqrt{7396+16704}}{2\times 29}
Multiply -116 times -144.
x=\frac{-86±\sqrt{24100}}{2\times 29}
Add 7396 to 16704.
x=\frac{-86±10\sqrt{241}}{2\times 29}
Take the square root of 24100.
x=\frac{-86±10\sqrt{241}}{58}
Multiply 2 times 29.
x=\frac{10\sqrt{241}-86}{58}
Now solve the equation x=\frac{-86±10\sqrt{241}}{58} when ± is plus. Add -86 to 10\sqrt{241}.
x=\frac{5\sqrt{241}-43}{29}
Divide -86+10\sqrt{241} by 58.
x=\frac{-10\sqrt{241}-86}{58}
Now solve the equation x=\frac{-86±10\sqrt{241}}{58} when ± is minus. Subtract 10\sqrt{241} from -86.
x=\frac{-5\sqrt{241}-43}{29}
Divide -86-10\sqrt{241} by 58.
x=\frac{5\sqrt{241}-43}{29} x=\frac{-5\sqrt{241}-43}{29}
The equation is now solved.
29x^{2}+86x-144=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
29x^{2}+86x-144-\left(-144\right)=-\left(-144\right)
Add 144 to both sides of the equation.
29x^{2}+86x=-\left(-144\right)
Subtracting -144 from itself leaves 0.
29x^{2}+86x=144
Subtract -144 from 0.
\frac{29x^{2}+86x}{29}=\frac{144}{29}
Divide both sides by 29.
x^{2}+\frac{86}{29}x=\frac{144}{29}
Dividing by 29 undoes the multiplication by 29.
x^{2}+\frac{86}{29}x+\left(\frac{43}{29}\right)^{2}=\frac{144}{29}+\left(\frac{43}{29}\right)^{2}
Divide \frac{86}{29}, the coefficient of the x term, by 2 to get \frac{43}{29}. Then add the square of \frac{43}{29} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{86}{29}x+\frac{1849}{841}=\frac{144}{29}+\frac{1849}{841}
Square \frac{43}{29} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{86}{29}x+\frac{1849}{841}=\frac{6025}{841}
Add \frac{144}{29} to \frac{1849}{841} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{43}{29}\right)^{2}=\frac{6025}{841}
Factor x^{2}+\frac{86}{29}x+\frac{1849}{841}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{43}{29}\right)^{2}}=\sqrt{\frac{6025}{841}}
Take the square root of both sides of the equation.
x+\frac{43}{29}=\frac{5\sqrt{241}}{29} x+\frac{43}{29}=-\frac{5\sqrt{241}}{29}
Simplify.
x=\frac{5\sqrt{241}-43}{29} x=\frac{-5\sqrt{241}-43}{29}
Subtract \frac{43}{29} from both sides of the equation.
x ^ 2 +\frac{86}{29}x -\frac{144}{29} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 29
r + s = -\frac{86}{29} rs = -\frac{144}{29}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{43}{29} - u s = -\frac{43}{29} + u
Two numbers r and s sum up to -\frac{86}{29} exactly when the average of the two numbers is \frac{1}{2}*-\frac{86}{29} = -\frac{43}{29}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{43}{29} - u) (-\frac{43}{29} + u) = -\frac{144}{29}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{144}{29}
\frac{1849}{841} - u^2 = -\frac{144}{29}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{144}{29}-\frac{1849}{841} = -\frac{6025}{841}
Simplify the expression by subtracting \frac{1849}{841} on both sides
u^2 = \frac{6025}{841} u = \pm\sqrt{\frac{6025}{841}} = \pm \frac{\sqrt{6025}}{29}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{43}{29} - \frac{\sqrt{6025}}{29} = -4.159 s = -\frac{43}{29} + \frac{\sqrt{6025}}{29} = 1.194
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}