Solve for p
p=\frac{29s}{4}+20
Solve for s
s=\frac{4\left(p-20\right)}{29}
Share
Copied to clipboard
-4p+80=-29s
Subtract 29s from both sides. Anything subtracted from zero gives its negation.
-4p=-29s-80
Subtract 80 from both sides.
\frac{-4p}{-4}=\frac{-29s-80}{-4}
Divide both sides by -4.
p=\frac{-29s-80}{-4}
Dividing by -4 undoes the multiplication by -4.
p=\frac{29s}{4}+20
Divide -29s-80 by -4.
29s+80=4p
Add 4p to both sides. Anything plus zero gives itself.
29s=4p-80
Subtract 80 from both sides.
\frac{29s}{29}=\frac{4p-80}{29}
Divide both sides by 29.
s=\frac{4p-80}{29}
Dividing by 29 undoes the multiplication by 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}