Evaluate
\frac{29}{11}\approx 2.636363636
Factor
\frac{29}{11} = 2\frac{7}{11} = 2.6363636363636362
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)29}\\\end{array}
Use the 1^{st} digit 2 from dividend 29
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)29}\\\end{array}
Since 2 is less than 11, use the next digit 9 from dividend 29 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)29}\\\end{array}
Use the 2^{nd} digit 9 from dividend 29
\begin{array}{l}\phantom{11)}02\phantom{4}\\11\overline{)29}\\\phantom{11)}\underline{\phantom{}22\phantom{}}\\\phantom{11)9}7\\\end{array}
Find closest multiple of 11 to 29. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 29 to get reminder 7. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }7
Since 7 is less than 11, stop the division. The reminder is 7. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}