Evaluate
\frac{288}{133}\approx 2.165413534
Factor
\frac{2 ^ {5} \cdot 3 ^ {2}}{7 \cdot 19} = 2\frac{22}{133} = 2.1654135338345863
Share
Copied to clipboard
\begin{array}{l}\phantom{133)}\phantom{1}\\133\overline{)288}\\\end{array}
Use the 1^{st} digit 2 from dividend 288
\begin{array}{l}\phantom{133)}0\phantom{2}\\133\overline{)288}\\\end{array}
Since 2 is less than 133, use the next digit 8 from dividend 288 and add 0 to the quotient
\begin{array}{l}\phantom{133)}0\phantom{3}\\133\overline{)288}\\\end{array}
Use the 2^{nd} digit 8 from dividend 288
\begin{array}{l}\phantom{133)}00\phantom{4}\\133\overline{)288}\\\end{array}
Since 28 is less than 133, use the next digit 8 from dividend 288 and add 0 to the quotient
\begin{array}{l}\phantom{133)}00\phantom{5}\\133\overline{)288}\\\end{array}
Use the 3^{rd} digit 8 from dividend 288
\begin{array}{l}\phantom{133)}002\phantom{6}\\133\overline{)288}\\\phantom{133)}\underline{\phantom{}266\phantom{}}\\\phantom{133)9}22\\\end{array}
Find closest multiple of 133 to 288. We see that 2 \times 133 = 266 is the nearest. Now subtract 266 from 288 to get reminder 22. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }22
Since 22 is less than 133, stop the division. The reminder is 22. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}