Evaluate
\frac{287}{174}\approx 1.649425287
Factor
\frac{7 \cdot 41}{2 \cdot 3 \cdot 29} = 1\frac{113}{174} = 1.6494252873563218
Share
Copied to clipboard
\begin{array}{l}\phantom{174)}\phantom{1}\\174\overline{)287}\\\end{array}
Use the 1^{st} digit 2 from dividend 287
\begin{array}{l}\phantom{174)}0\phantom{2}\\174\overline{)287}\\\end{array}
Since 2 is less than 174, use the next digit 8 from dividend 287 and add 0 to the quotient
\begin{array}{l}\phantom{174)}0\phantom{3}\\174\overline{)287}\\\end{array}
Use the 2^{nd} digit 8 from dividend 287
\begin{array}{l}\phantom{174)}00\phantom{4}\\174\overline{)287}\\\end{array}
Since 28 is less than 174, use the next digit 7 from dividend 287 and add 0 to the quotient
\begin{array}{l}\phantom{174)}00\phantom{5}\\174\overline{)287}\\\end{array}
Use the 3^{rd} digit 7 from dividend 287
\begin{array}{l}\phantom{174)}001\phantom{6}\\174\overline{)287}\\\phantom{174)}\underline{\phantom{}174\phantom{}}\\\phantom{174)}113\\\end{array}
Find closest multiple of 174 to 287. We see that 1 \times 174 = 174 is the nearest. Now subtract 174 from 287 to get reminder 113. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }113
Since 113 is less than 174, stop the division. The reminder is 113. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}