Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)280}\\\end{array}
Use the 1^{st} digit 2 from dividend 280
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)280}\\\end{array}
Since 2 is less than 35, use the next digit 8 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)280}\\\end{array}
Use the 2^{nd} digit 8 from dividend 280
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)280}\\\end{array}
Since 28 is less than 35, use the next digit 0 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)280}\\\end{array}
Use the 3^{rd} digit 0 from dividend 280
\begin{array}{l}\phantom{35)}008\phantom{6}\\35\overline{)280}\\\phantom{35)}\underline{\phantom{}280\phantom{}}\\\phantom{35)999}0\\\end{array}
Find closest multiple of 35 to 280. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 280 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 35, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}