Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

28-\left(x^{2}+x\right)=3
Use the distributive property to multiply x+1 by x.
28-x^{2}-x=3
To find the opposite of x^{2}+x, find the opposite of each term.
28-x^{2}-x-3=0
Subtract 3 from both sides.
25-x^{2}-x=0
Subtract 3 from 28 to get 25.
-x^{2}-x+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 25}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 25}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+100}}{2\left(-1\right)}
Multiply 4 times 25.
x=\frac{-\left(-1\right)±\sqrt{101}}{2\left(-1\right)}
Add 1 to 100.
x=\frac{1±\sqrt{101}}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{101}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{101}+1}{-2}
Now solve the equation x=\frac{1±\sqrt{101}}{-2} when ± is plus. Add 1 to \sqrt{101}.
x=\frac{-\sqrt{101}-1}{2}
Divide 1+\sqrt{101} by -2.
x=\frac{1-\sqrt{101}}{-2}
Now solve the equation x=\frac{1±\sqrt{101}}{-2} when ± is minus. Subtract \sqrt{101} from 1.
x=\frac{\sqrt{101}-1}{2}
Divide 1-\sqrt{101} by -2.
x=\frac{-\sqrt{101}-1}{2} x=\frac{\sqrt{101}-1}{2}
The equation is now solved.
28-\left(x^{2}+x\right)=3
Use the distributive property to multiply x+1 by x.
28-x^{2}-x=3
To find the opposite of x^{2}+x, find the opposite of each term.
-x^{2}-x=3-28
Subtract 28 from both sides.
-x^{2}-x=-25
Subtract 28 from 3 to get -25.
\frac{-x^{2}-x}{-1}=-\frac{25}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{25}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=-\frac{25}{-1}
Divide -1 by -1.
x^{2}+x=25
Divide -25 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=25+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=25+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{101}{4}
Add 25 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{101}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{101}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{101}}{2} x+\frac{1}{2}=-\frac{\sqrt{101}}{2}
Simplify.
x=\frac{\sqrt{101}-1}{2} x=\frac{-\sqrt{101}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.